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STRESS FIELD IN A SPHERE
SUBJECTED TO LARGE DEFORMATIONS

T. L. CHENt and A. J, DURELLIt

Civil and Mechanical Engineering Department,
The Catholic University of America, Washington, D.C. 20017, U.S.A.

Abstract-The previously obtained strain fields in a sphere subjected to large deformations were converted into
stress fields by using two different approaches: the strain-energy function and the concept of natural stress.
Complete determination of stresses on the equatorial plane and on a plane parallel to it are given. The deviatoric
stresses on the equatorial plane and the maximum shear stresses along the vertical axis of the sphere were
determined using both approaches. The simplicity of the theory using the natural stress concept offers a good
alternative for materials exhibiting linear relationship between natural strain and natural stress.

1. INTRODUCTION

IN A previous paper [IJ the finite-strain field in a polyurethane rubber (Hysol 2085) sphere
subjected to a series of increasingly larger diametral compression loads applied between
two flat plates was determined using the embedded-moire technique. One of the two
objects of the present paper is to determine the stresses for that same problem for which
the strains were obtained.

Two approaches are followed to translate the experimentally determined strains into
stresses, First the concept of strain-energy function for an isotropic, elastic body was
used. Then, the stress field was determined with the Hookean type natural stress-natural
strain relation developed by Parks and Durelli [2]. The concept of natural stress, analogous
to the concept of natural strain, is defined as the integral of incremental stresses, each of
them computed using the area corresponding to a particular incremental load level. For
some materials, the natural stress-natural strain relation is linear up to high levels of
strain.

The second object of this study is to compare the stress fields obtained from these
two different methods in order to reassess the merit of each of them, especially since the
latter method uses a very simple stress-strain relation which greatly simplifies the analysis.

Spheres are used in many industrial applications. Besides its academic interest the
knowledge of stresses in spheres subjected to large deformations is of importance in the
manufacturing of soft rollers.

2. DETERMINATION OF MATERIAL PROPERTIES

2.1 Experiments

Four specimens were made: one for uniaxial tensile, one for homogeneous equally
biaxial tensile, one for strip-biaxial tensile and one for uniaxial compressive testing. The
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first three specimens were cut from a rubber sheet printed with i in. x i in. grids and routed
to the shape and size shown in Figs. la, b, c and the last one was a casting of 1 in. x 1 in.
x 2 in. on which t in x t in. grids were drawn (Fig. ld).

For uniaxial tensile and compressive, and strip-biaxial tests, successively larger
amounts of dead weights were applied to the specimens. In the compression test, the dry
friction between the loading plates and specimen was decreased by applying grease. The
grids were photographed after each step of loading. Deformations were obtained by
analyzing the deformed grids. The measurements were made using a travelling microscope
with a sensitivity of 0·00004 in.
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FIG. I.

The homogeneous equally biaxial tensile test was conducted using the loading frame
shown in Fig. 2. By turning a pair of handles, force is transmitted to the specimen through
metal wires. Turn-buckles permit small adjustments to equalize tension in the wires. Since
the rubber of the sheet is birefringent, the uniformity of the distribution of the loading in
each lug was verified by observing the photoelastic pattern. The forces applied were read
from the pre-calibrated spring scales. The camera was placed vertically to photograph
the specimen with the grids.

In the strip biaxial tensile test, the deformation in the transverse direction was pro­
hibited to produce a biaxiality of two to one in stress when Hooke's law is obeyed and the
material is incompressible, and close to that ratio of biaxiality when some departure of
those conditions take place.

2.2 Elastic constants

The polyurethane rubber used for the experiment (100 PBW of Hysol 2085 and
45 PBW Hysol 3462) behaves like an incompressible material up to 300 per cent stretch
in uniaxial tensile and down to 75 per cent in uniaxial compressive state of stress, and the
natural Poisson's ratio (ii) is equal to 0·5 up to more than 100 per cent and down to about
27 per cent of natural strain (Fig. 3). The natural stress-natural strain relation is linear
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(2.1)

up to about 80 per cent tensile and 25 per cent compressive strain (Fig. 4). The natural
modulus of elasticity (E) determined from the natural stress-natural strain curve is 150 psi.

The principle of superposition can be applied to the biaxial state of stress and strain
if natural stress and natural strain are considered [2]. With E and vobtained from the
uniaxial test, the Hookean type of stress and strain relation is expressed by

E
ifx = -----=z(sx + vsy ).

I-v

A comparison of predicted stresses using equation (2.1) and experimental1y deter­
mined stresses shows no deviation for the low values of natural strain and a maximum
deviation of 5 per cent at 12 per cent natural strain for the homogeneous equally biaxial
test and also 5 per cent at 17 per cent natural strain for the strip-biaxial test (Fig. 5).

The fact that the polyurethane rubber used in the investigation was incompressible
imposes particular characteristics to the evaluation. As it is wel1 known, when a material
is incompressible, there is no way of computing three-dimensional stresses from the
strains. It wil1 be recalled that any amount of hydrostatic stress will produce no strain in
such a material. The evaluation of stresses in this case is usual1y conducted by integrating
the equations of equilibrium and eliminating the indeterminacy through known boundary
values of stresses. This is the method that will be used in the paper but the reader should
keep in mind that this limitation is imposed by the kind of material used in this particular
case, and not by the stress analysis method.
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2.3 Strain energy function

For an incompressible, homogeneous and isotropic material, the strain-energy function
W is a function of the two strain invariants I I and 12 given by

(2.2a, b)

where AI , A2 and A3 are the principal stretches coinciding with the directions x, y and z
in the calibration specimens of Fig. 1. The incompressibility is expressed by

(2.2c)

which permitted the simplifications in the last equality of each of the equations (2.2a and b).
For problems of plane stress, i.e. the stress (1~ coinciding with z direction vanishes, the
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constitutive relation can be expressed as [3]

(2.3a, b)

(2.4)

where aT and af are principal Eulerian stresses coinciding with x and y directions.
Gent and Thomas [4] have proposed the following mathematically simple form of

strain energy function useful for some vulcanized rubbers

w= Cl(Il-3)+C2In(~2)

where C1 and C2 are constants. This form was found to fit well the experimental data of
the polyurethane rubber used in the research reported in this paper.

To determine the values of C 1 and C2 , take the partial derivatives

and (2.5a, b)
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from equation (2.4) and substitute them into equation (2.3a, b). Then

(2.6a, b)

Using the experimentally determined stresses and the corresponding stretches from
uniaxial tensile and compressive\ strip-biaxial and homogeneous equally biaxial tests and
the above equations, the results were plotted the way shown in Fig. 6. Actually, the ex­
perimental data in the uniaxial tensile test alone would be sufficient to determine C I and
C2 [5]. The other test results provide additional verifications to the determination [6].
The data points are clustered around the straight line, the intercept and slope of which
give the values of C I = 17 psi and C2 = 25 psi, respectively. Thus the strain energy
function W of the material used is

(2.7)

for /1 S 9·74 and /2 S 6·14 (range corresponding to the results of uniaxial tensile test).
The highest values of strain invariants from the test on the sphere are / I = 342 and
/2 = 3·55 which fall within the range of calibration.

Young's modulus E which is the slope of the uniaxial stress-strain curve at zero strain
was obtained by taking the partial derivative of (J~ with respect to )'2 from equation (2.6b)

30 Fy=Fx

29

~l:i~~i~C
28

'f
27

b ;.<
26

~::::: 25- ,
N' o aJ. Uniaxial tensile data..< 24

23
<) af. Strip- biaxial data

N'
oaf] Homogeneous equally..<

22N>,
\>, ..< 6, a; biaxial dota

'" 21
~ .. orN>' 20..<

19

18

Principal directions I and 2
coinciding with x and y

16 C,' 17 psi

o 0-04 0·08 0-12 016 0-20 0'24

A~ A~
I;'I;

FIG. 6.



Stress field in a sphere subjected to large deformations

and using the relation Al = 1/J ,.1,2

which is in agreement with the value obtained previously.

3. STRESS ANALYSIS AND RESULTS

The following methods of translating strain fields into stress field were used.

1041

(2.8)

3.1 Method of strain energy function

Expressions for the stress components at a point of an incompressible body which is
deformed in an arbitrary manner can be obtained by expanding the equation given in
[7]. For a geometry and loading with rotational symmetry and using polar-cylindrical
coordinates (u = radial displacement, v = 0 = tangential displacement, w = vertical
displacement), these equations can be written in Eulerian description as

and

( au) 2 ('ow) 2

1-~ + a;: aw [(au)2 ( aW)2Jaw
[( I_au)(I_aw)_auawJ2aI~- az + l- az art

ar az az ar
+p

where p is an arbitrary hydrostatic pressure which is no longer equal to t(O";r + 0":0 +O":z)--­
the mean stress at the point-as in the infinitesimal theory of elasticity [8]. The strain
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( aU)2 (au)2 ( U)2 (aw)2 ( aW)2
1'1 = 1- ar + az + 1-~ + az + l-~

( U)2[( aU)2 (au)2 (aw)2 ( aW)2J
I~ = 1-~ 1- ar + az + a;: + 1-~

+ [(1- au) (1- aw) _au aWJ2ar az az ar
I~ = (1_~)2[(1_au)(1_aw) _au aWJ2

r ar az az ar

(3.3a, b, c)

It is to be noted that the strain invariants used in these equations are given in terms
of Cauchy's deformation tensor while those given in equations (2.2a, b, c) are in terms of
Finger's. For an incompressible material, these invariants are related to each other by [9J

and accordingly

13 = I~ = 1 (3.4a, b, c)

aw aw C2 25 .

aI' = -al = T = yPSI,
1 2 2 1

aw aw .
- = - = C 1 = 17 pSIa1'2 all (3.5a,b)

which are the values used in equations (3.1a, b, c and 3.2c).
Along the vertical and horizontal axes of the sphere, the cross spatial derivatives

vanish and equations (3.1a, b, c) reduce to

(3.6a, b, c)
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where Am Aoo and Azz are principal stretches. Shear stresses vanish everywhere on the
principal axes. Equations (3.3a, b, c) are also reduced to

(
aU)2 ( U)2 ( aW)2/'t = 1- ar + 1--;:- + 1- az

111
= 1"2+-2-+12

A rr AOO A zz

( aU)2( U)2 ( U)2( aW)2 ( aW)2( aU)2/2= l- ar 1--;:- + 1--;:- l- az + l- az l- ar
111

= 1212 + 12-;-Z+ 12 12
ArrA88 A90Azz Azzllrr

( aU)2( U)2( aW)2l' = 1-- 1-- 1--
3 ar r aZ

(3.7a, b, c)

The stress component (j'~ along the horizontal axis was obtained by numerical inte­
gration along that axis using the equilibrium equation:

(3.8)

and remembering that at the boundary (j'~ is equal to zero. The terms ((j'~-(j':o) and r~z

were computed from equations (3.6a, band 3.2c). The procedure is much the same as
the shear-difference method of separation of stresses in photoelasticity. Except for the
method used to determine the stresses the detailed procedure can be found in [10]. Once
the radial stresses (j'~r along the horizontal axis are determined, the value of P at every
point along the horizontal axis is obtained by subtracting the value of (j':~ from ((j'~r - p),
which is obtained from equation (3.6a). These values for P are substituted into equations
(3.6b and c) to compute tangential and vertical stresses.

The stresses are shown normalized in Figs. 7, 8 and 9 by dividing them by the nominal
stress

p
(j' =-~

p nR5

where Ro is the original radius of sphere and P is the corresponding load.
To generalize the results the deformation of the sphere is characterized using a load

parameter defined as

P (j'
K=---=-.!!.

nR5E E

where E is Young's modulus obtained from equation (2.8). The results can then be applied
to any sphere of any size provided the K value is the same. Alternatively, the deformation
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TABLE 1.

P bv P
K=~

(Ib) J1 = 2R (Jp = -2 (psi)
0 nRo E

48 0·048 1·30 0·0086
95 0·076 2·58 0·0170

195 0·120 5·29 0·035
395 0·i86 10·72 0·071
595 0·234 16·15 0·106
760 0·268 20·62 0·136

In Fig. 9 the vertical stresses a;z for small deformations are compared to those obtained
by Durelli and Daniel [IIJ and to the theoretical solution by Sternberg and Rosenthal [12].
Near the center the theoretical values are higher than those obtained here because the
theory assumes point loading and in the experiments there is appreciable flattening at
the poles.

All three normalized stresses near the center become smaller as the deformation
becomes larger. The center of the sphere is a point of particular interest. Stresses and
various definitions of strain at the center are plotted as a function of load in Fig. 10.
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2r~ax

The procedure to evaluate stresses, described above, has also been applied to a line
parallel to and 1* in. above the horizontal axis. It is to be noted, however, that the term
(a~-a:6) was computed using general equations (3.1a, b). The results for one load level
are shown in Fig. 11.

Equilibrium checks were made between the applied load and vertical stress on the
equatorial plane for each load level and on the plane parallel to and 1* in. above it for
one level of load. All agreements fall between +3 and -4·5 per cent.

The maximum shear stresses r~ax along the vertical axis of the sphere for several load
levels are computed from the following equation:

la;. - a~rl

and equations (3.6a and c). The results are shown in a normalized form in Fig. 12. For
small deformation, the comparison with Frocht and Guernsey [13J is quite good. The
values become progressively smaller as the deformations get larger.

The indeterminacy introduced into equations (3.1a, b, c) by the arbitrary hydrostatic
pressure p can also be eliminated by expressing the constitutive relation in terms of the
stress deviator, the only part of the stress that causes deformation. The stress deviator is



defined as

Stress field in a sphere subjected to large deformations

p

2-8

2-6

2-4

2-2
P

2-0 8v
jl =- =0234

1-8 2RO

1-6 rr =...f...- =16-15
p rrR~

'"~I "- IA
K='!.e... =0-106... b

E

~ Ib~
1-2

C2 1C, =1'47
1-0

0-8 Tr~

0-6

0-4

FIG. II.

1047

(3.10)

where the indices i, j = 1,2,3 correspond to the radial, tangential and vertical directions.
The deviatoric stresses so obtained along the horizontal axis for several load levels are
shown in Figs. 13, 14 and 15. The results have not been normalized in these figures to
emphasize the difference with natural stresses.

3.2 Hooke's law in natural stress and natural strain

The natural stress-natural strain relations in polar-cylindrical coordinates, along a
principal axis are

liE E
ii - e+--e

rr - (1 +v)(I-2v) 1+li rr

liE E
ii86 = (1 +v)(I-2v/+ 1+li e99

vE E
iizz = (1 +v)(1-2v/+ 1+vezz .

However, for an incompressible material

e = err +e99 +ezz = In(ArrA99Azz) = 0

(3.lla, b, c)
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and 1- 2v is also equal to zero. Consequently, an indeterminacy arises. Call it p, and
equations (3.11a, b, c) can be written as

_ E _ _
(J" = -1J,,+P

+v

_ E _ _
(Jzz = -1_Bzz +p.

+v

Sum up the above three equations and p is given by

p = t(O'" +0'00 + 0'zz)·

(3.12a, b, c)

(3.13)

Clearly, p is the mean stress at a point. Using equations (3.10 and 3.12a, b, c), the stress
deviators are given by:

- E
Soo = --_8001+v

- E
Szz = --_8zz ·

1+v

(3.14a, b, c)
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As pointed out the material used here obeyed Hookean type natural stress~natural

strain relation up to 12 per cent in natural strain in homogeneous biaxial, state of stress
of equal ratio of biaxiality, and up to 80 per cent in uniaxial state of stress. These ranges
allow the translation ofall the natural strains obtained in the sphere into natural deviatoric
stresses using equations (3.14a, b, c) and the previously determined material properties.

The deviatoric stresses on the horizontal axis are shown in Figs. 13, 14 and 15 and the
normalized natural maximum shear stresses on the vertical axis in Fig. 12. The natural
maximum shear stresses were obtained in a way similar to the Eulerian ones.
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3.3 Deviatoric stresses obtained from both·approaches

Since strictly speaking natural stresses do not satisfy equilibrium it would be difficult
to determine the unknown hydrostatic pressure using natural stresses. The Eulerian and
natural deviatoric stresses on the horizontal axis are not very different (see Figs. 13, 14
and 15). The most marked difference is noticeable for the vertical stress at the center of
the sphere at the level P = 760 lb and is about 4·6 per cent. For small deformation, both
approaches should degenerate to the linear stress-strain relation of infinitesimal elasticity
and the results coincide as expected. The maximum shear stresses along the vertical axis
obtained from the two approaches are also shown in Fig. 12.
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The embedded-moire technique had been successfully applied to determine the interior
state of stress and strain in a three-dimensional transparent body. The method gives whole­
field information and makes possible the complete determination of the stress and strain
tensors along an arbitrary line. This would have been very difficult, if not impossible,
using any other of the presently available methods. The method is particularly suitable
for finite-strain determinations.

Stress fields have been successfully obtained from strain fields using two approaches.
The strain energy function approach has a well founded theoretical basis, yet the process
is rather complex. On the other hand, the concept of natural stress offers a rather simple
alternative.

Although the material used for the tests reported here is incompressible, the methods
of analysis and the interpretation of the results obtained are not restricted to incom­
pressible materials and apply equally well to any transparent material [14].
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A6CTpaKT-npeo6pa30BbIBalOTCJI 3apaHee orrpeAeJleHHble rroJlJl Ae<!>opMallHH B wape, rrOABep)l(eHHoMy

AeHCTBHIO 60JlbWHX Ae<!>opMallHH, B rroJlJl HarrpJl)l(eHHH, rryTeM HCrrOJlb30BaHHJI AByX pa3Hblx rroAxoAoB K

peweHHlO, a HMeHHO: <!>YHKlIHH :lHeprHM Ae<!>opMallHH H KOHlIerrHH eCTeCTBeHHoro HarrpJl)l(eHHJI. )l,aeTCJI

rrOJlHOe orrpeAeJleHHe HarrpJl)l(eHHH Ha 3KBaTOpHaJlbHOH IIJIOCKOCTH R rrapaJlJleJlbHOH K ee. npRMeHJIJI ABa

rrOAXOAa K peweHHlO, orrpeAeJlJlIOTCJI AeBHaTopHble HarrpJl)l(eHHJI Ha3KBaTOpRaJlbHOH rrJlOCKOCTH R MaKCR­

MyM HarrpJl)l(eHHH CABHra BAOJlb BepTHKaJlbHOH OCH mapa. npOCTOTa TeopHR, KOTOpaJi RcrrOJlb3yeT KOHlIe­

rrllHIO eCTeCTBeHHoro HarrpJl)l(eHHJI, JlBJlJleTCJI lIeJleC006pa3HblM BapHaHTOM AJlJI MaTepHaJlOB, rrpOJlBJlJlIO­

mHX JlHHeHHYIO 3aBHCHMOCTb Me)l(AY eCTeCTBeHHOH Ae<!>opMallHeH H eCTeCTBeHHblM HarrpJl)l(eHHeM.


